Other bulletins in this series include:

Breast Surgery

Wednesday, 6 July 2022

 

Driving pressure-guided ventilation decreases the mechanical power compared to predicted body weight-guided ventilation in the Acute Respiratory Distress Syndrome

by Anne-Fleur Haudebourg, Samuel Tuffet, François Perier, Keyvan Razazi, Nicolas de Prost, Armand Mekontso Dessap and Guillaume Carteaux 

Critical Care volume 26, Article number: 185 (2022) Published: 20 June 2022

 

Background

Whether targeting the driving pressure (∆P) when adjusting the tidal volume in mechanically ventilated patients with the acute respiratory distress syndrome (ARDS) may decrease the risk of ventilator-induced lung injury remains a matter of research. In this study, we assessed the effect of a ∆P-guided ventilation on the mechanical power.

Methods

We prospectively included adult patients with moderate-to-severe ARDS. Positive end expiratory pressure was set by the attending physician and kept constant during the study. Tidal volume was first adjusted to target 6 ml/kg of predicted body weight (PBW-guided ventilation) and subsequently modified within a range from 4 to 10 ml/kg PBW to target a ∆P between 12 and 14 cm H2O. The respiratory rate was then re-adjusted within a range from 12 to 40 breaths/min until EtCO2 returned to its baseline value (∆P-guided ventilation). Mechanical power was computed at each step.

Results

Fifty-one patients were included between December 2019 and May 2021. ∆P-guided ventilation was feasible in all but one patient. The ∆P during PBW-guided ventilation was already within the target range of ∆P-guided ventilation in five (10%) patients, above in nine (18%) and below in 36 (72%). The change from PBW- to ∆P-guided ventilation was thus accompanied by an overall increase in tidal volume from 6.1 mL/kg PBW [5.9–6.2] to 7.7 ml/kg PBW [6.2–8.7], while respiratory rate was decreased from 29 breaths/min [26–32] to 21 breaths/min [16–28] (p < 0.001 for all comparisons). ∆P-guided ventilation was accompanied by a significant decrease in mechanical power from 31.5 J/min [28–35.7] to 28.8 J/min [24.6–32.6] (p < 0.001), representing a relative decrease of 7% [0–16]. With ∆P-guided ventilation, the PaO2/FiO2 ratio increased and the ventilatory ratio decreased.

Conclusion

As compared to a conventional PBW-guided ventilation, a ∆P-guided ventilation strategy targeting a ∆P between 12 and 14 cm H2O required to change the tidal volume in 90% of the patients. Such ∆P-guided ventilation significantly reduced the mechanical power. Whether this physiological observation could be associated with clinical benefit should be assessed in clinical trials.

 

 

 

No comments: