Other bulletins in this series include:

Breast Surgery

Tuesday, 14 June 2016

Guidelines for the Appropriate Use of Bedside General and Cardiac Ultrasonography in the Evaluation of Critically Ill Patients—Part II: Cardiac Ultrasonography



Critical Care Medicine: June 2016 - Volume 44 - Issue 6 - p 1206–1227 
Levitov, A et al



Objective: To establish evidence-based guidelines for the use of bedside cardiac ultrasound, echocardiography, in the ICU and equivalent care sites. Methods: Grading of Recommendations, Assessment, Development and Evaluation system was used to rank the “levels” of quality of evidence into high (A), moderate (B), or low (C) and to determine the “strength” of recommendations as either strong (strength class 1) or conditional/weak (strength class 2), thus generating six “grades” of recommendations (1A–1B–1C–2A–2B–2C). Grading of Recommendations, Assessment, Development and Evaluation was used for all questions with clinically relevant outcomes. RAND Appropriateness Method, incorporating the modified Delphi technique, was used in formulating recommendations related to terminology or definitions or in those based purely on expert consensus. The process was conducted by teleconference and electronic-based discussion, following clear rules for establishing consensus and agreement/disagreement. Individual panel members provided full disclosure and were judged to be free of any commercial bias. Results: Forty-five statements were considered. Among these statements, six did not achieve agreement based on RAND appropriateness method rules (majority of at least 70%). Fifteen statements were approved as conditional recommendations (strength class 2). The rest (24 statements) were approved as strong recommendations (strength class 1). Each recommendation was also linked to its level of quality of evidence and the required level of echo expertise of the intensivist. Key recommendations, listed by category, included the use of cardiac ultrasonography to assess preload responsiveness in mechanically ventilated (1B) patients, left ventricular (LV) systolic (1C) and diastolic (2C) function, acute cor pulmonale (ACP) (1C), pulmonary hypertension (1B), symptomatic pulmonary embolism (PE) (1C), right ventricular (RV) infarct (1C), the efficacy of fluid resuscitation (1C) and inotropic therapy (2C), presence of RV dysfunction (2C) in septic shock, the reason for cardiac arrest to assist in cardiopulmonary resuscitation (1B–2C depending on rhythm), status in acute coronary syndromes (ACS) (1C), the presence of pericardial effusion (1C), cardiac tamponade (1B), valvular dysfunction (1C), endocarditis in native (2C) or mechanical valves (1B), great vessel disease and injury (2C), penetrating chest trauma (1C) and for use of contrast (1B–2C depending on indication). Finally, several recommendations were made regarding the use of bedside cardiac ultrasound in pediatric patients ranging from 1B for preload responsiveness to no recommendation for RV dysfunction. Conclusions: There was strong agreement among a large cohort of international experts regarding several class 1 recommendations for the use of bedside cardiac ultrasound, echocardiography, in the ICU. Evidence-based recommendations regarding the appropriate use of this technology are a step toward improving patient outcomes in relevant patients and guiding appropriate integration of ultrasound into critical care practice.

No comments: